Team:Berkeley/Project/Vesicle Buster

From 2010.igem.org

(Difference between revisions)
Line 9: Line 9:
<font size=5>'''Overview'''</font>
<font size=5>'''Overview'''</font>
-
The Vesicle Buster is designed to degrade the vesicle membrane after lysis by degrading the phospholipids and creating pores in the membrane. It allows the payload that has been released into the vesicle by Self-lysis to move to the cytoplasm of the Choanoflagellate.  
+
The Vesicle Buster is designed to degrade the vesicle membrane after lysis by degrading the phospholipids and creating pores in the membrane. It allows the payload that has been released into the vesicle by Self-lysis to move to the cytoplasm of the Choanoflagellate.  
<font size=5>'''Construct'''</font>
<font size=5>'''Construct'''</font>
Line 26: Line 26:
<font size=5>From Mammalian to Lower Metazoan Delivery</font>
<font size=5>From Mammalian to Lower Metazoan Delivery</font>
-
We derived the vesicle buster device from a construct built in the Anderson Lab that has been assayed in a mammalian system. Here's an outline of the key features of the device that made it usable in our delivery scheme, and change we made tailor it to our scheme.  
+
We derived the vesicle buster device from a construct built in the Anderson Lab that has been assayed in a mammalian system. Here's an outline of the key features of the device that made it usable in our delivery scheme, and the changes we made tailor it to our scheme.  
-
1)Constitutively expressed: We added a Pcon to the device, since the short time window between ingestion and digestion, the vesicle buster had to be constitutively expressed and ready to act upon self lysis. Stable expression of the vesicle buster was accomplished by placing it under the control of Pcon, a constitutive promoter.  
+
1)Constitutively expressed: We added a constitutive promoter (Pcon) to the device because there is only a short time window between ingestion and digestion, meaning the vesicle buster must be constitutively expressed so it's ready to act right after self lysis occurs.
-
2)Specific to Eukaryotes
+
2)Specific to Eukaryotes: Bacteria cell membranes are different from eukaryotic membranes in several ways. For example, bacteria membranes don't contain cholesterol, while eukaryotic membranes do. Their membranes are also composed of different phospholipids. The design of the Vesicle Buster exploits these differences by including proteins that act specifically on eukaryotic membranes (see details of PFO and PLC mechanism above), leaving the bacteria's membranes unharmed.
-
3)Not Specific to any particular Eukaryote
+
3)Not Specific to any particular Eukaryote: Sinc
4)Degrades the vesicle, but not the host
4)Degrades the vesicle, but not the host

Revision as of 06:21, 26 October 2010

Vesicle Buster Header.png



Overview

The Vesicle Buster is designed to degrade the vesicle membrane after lysis by degrading the phospholipids and creating pores in the membrane. It allows the payload that has been released into the vesicle by Self-lysis to move to the cytoplasm of the Choanoflagellate.

Construct


Vesicle buster construct.png

  • Pcon: constitutive promoter
  • Perfrinogen O (PFO): a protein from Clostridium perfringens that oligomerizes to form pores in cholesterol-containing membranes
  • Phospholipase C (PLC): a phospholipase from Clostridium perfringens that degrades eukaryotic phospholipids
  • Degradation tag (ssDeg): Eukaryotic degradation tag
  • Pre-pro: a sequence that targets proteins to the periplasm of E. coli



From Mammalian to Lower Metazoan Delivery

We derived the vesicle buster device from a construct built in the Anderson Lab that has been assayed in a mammalian system. Here's an outline of the key features of the device that made it usable in our delivery scheme, and the changes we made tailor it to our scheme.

1)Constitutively expressed: We added a constitutive promoter (Pcon) to the device because there is only a short time window between ingestion and digestion, meaning the vesicle buster must be constitutively expressed so it's ready to act right after self lysis occurs.

2)Specific to Eukaryotes: Bacteria cell membranes are different from eukaryotic membranes in several ways. For example, bacteria membranes don't contain cholesterol, while eukaryotic membranes do. Their membranes are also composed of different phospholipids. The design of the Vesicle Buster exploits these differences by including proteins that act specifically on eukaryotic membranes (see details of PFO and PLC mechanism above), leaving the bacteria's membranes unharmed.

3)Not Specific to any particular Eukaryote: Sinc

4)Degrades the vesicle, but not the host



Challenge 2: Toxicity to bacteria Since the bacteria stably express the vesicle buster, the device also cannot harm the bacteria and must act only on the choanoflagellate’s membrane. This specificity was satisfied by using PFO and PLC. PFO acts only on a cholesterol-based membrane and does not affect E. coli’s membrane, which is cholesterol-free. PLC also targets phsopholipids found only in eukaryotic membranes. Finally, once the food vesicle is opened and its contents are released into the cytoplasm, PLC and PFO must be prevented from breaking down any other membrane and creating further damage to the choanoflagellate. For this reason, degradation tags were added to these enzymes.


Payload Delivery Device