Team:Alberta/Notebook June

From 2010.igem.org

Revision as of 16:12, 12 July 2010 by Anh (Talk | contribs)

genomikon


June 2010

  • Su
  • Mo
  • Tu
  • We
  • Th
  • Fr
  • Sa
iGEM 2010 Notebook

The lab notebook chronicles our journey in the creation of the Genomikon kit. Many paths were woven together in space and time to reach this finished masterpiece. To help you navigate through these trials with us we have laid out our notebook in a layered fashion. This page gives a sketch of each project and how it interacts with each other. Then follow the links to a projects page for time line of the major landmarks and accomplishments. If you require more details on the project the links within that page will take you to our day-by-day work log.

Building Parts

The Building Parts project was responsible to first build a plasmid (plasmid 01)that contained our own specialized prefix and suffix nested inside of the standard BioBrick prefix and suffix. After plasmid 01 existed we inserted the CcdB gene (the "death" gene) between our prefix and suffix removing the gene for Kanamycin resistance (plasmid 02). Plasmid 02 is fantastic base plasmid from which we are able to amplify any part at all because it provides a positive selection marker when transformed into DH5α. At this point we were able to make parts en masse to put in our kit. After obtaining a particular part in a plasmid we PCRed the part and digested it ready to use in Assembly or to Test the plasmid.

Testing Parts

Before we were able to test parts we created 2 base testing plasmids (vector 01 and vector 02). Vector 01 is designed to test Open Reading Frame parts, or parts that code for proteins. The part is flanked by a promoter and the start codon on one side and a stop codon and terminator on the other. Vector 02 is designed to test linker parts, or parts that control the expression of the Open Reading Frame parts they are next two. In Vector 02 the part is flanked by two distinct reporter genes, that by comparing the relative expression of the 2 reporter genes we can determine the behavior of the linking part.

Assembly Method

Insert description here.

Plates

Insert description here.

Competent Cells

Insert description here.

Software

Insert description here.

June 1, 2010


Building Parts

KanA/B' and KanB/A' fragements PCRed on 11-05-2010, digested with BsaI-HF at 37oC for 1.5hours, heat inactivated at 65oC for 30 minutes. Tried to ligate KanA/B' fragments to each other and tried to ligate KanB/A' fragments to each other. Also tried to ligate KanA/B' fragments with KanB/A'. Ligated with T4 DNA ligase for 3 hours at 21oC.

Set up liquid cultures of KanRA/B'-Bsa and KanR B/A'-Bsa in pSB1C3 from plates streaked with on 30-05-2010

.

June 2, 2010


Building Parts

Miniprepped liquid cultures from 01-06-2010. Ran a 1% agarose gel of the ligations performed 01-06-2010.

To optimize the Restriction and ligation of BsaI-HF, digested KanA/B' and KanB/A' fragements PCRed on 11-05-2010 with the following recipe:

Digestion Recipe:

    14μL either A/B' or B/A' Kanamycin resistance cassette (approx. 100ng/μL)
      5μL 1/10 dillution of 100X BSA
        5μL 10X NEBuffer4
          1.5&mu:L BsaI-HF
            24.5μL MilliQ

            Digested at 50oC for 1hour, heat inactivated the enzyme at 65oC for 20 minutes PCR purified the digests.