Team:Aberdeen Scotland

From 2010.igem.org

(Difference between revisions)
Line 16: Line 16:
[[Image: Wellcome_logo.gif‎|300 px]]
[[Image: Wellcome_logo.gif‎|300 px]]
[[Image: Sulsalogo.gif|300 px]]
[[Image: Sulsalogo.gif|300 px]]
 +
[[Image: Uoalogo.gif|300 px]]
<p>
<p>
[[Image:Bioline.gif|100 px]]
[[Image:Bioline.gif|100 px]]

Revision as of 15:24, 2 October 2010

University of Aberdeen - ayeSwitch - iGEM 2010

Project Abstract

A novel genetic toggle switch regulated at the translational level was engineered in yeast that allowed the mutually exclusive expression of either green or cyan fluorescent protein. Using cell cytometry (FACS) and fluorimetry, we demonstrated in yeast the successful expression and translational regulation of a fusion of mRNA binding protein and fluorescent protein. These results, along with published parameter values, were used to predict via deterministic and stochastic models that the probability of successful bistability for our switch was 0.96%, but this could be improved theoretically to a maximum of 51.27% by limiting the range of variation of the most sensitive parameters. The models also predicted that co-operative binding of the mRNA binding protein to its mRNA stem loop was essential for generating switch-like behaviour. These results suggest that a translationally regulated genetic toggle switch is a viable and novel engineering concept applicable to medicinal, environmental and technological problems.

Our Sponsors:

Aberdeen iGEM 2010 gratefully acknowledges the financial support of the following organisations:


Wellcome logo.gif Sulsalogo.gif Uoalogo.gif

Bioline.gif White.gif BioRad.gif White.gif Labtech.gif


Back to the Top