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Introduction

Introduction

1 What is IGEM?

2 Identify a problem.

3 Research potential solution using a Genetic Machine.

4 Devise a mathematical model.

5 Build the machine.
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Introduction to Machine

Introduction to Machine

What does it do?

Why is it important?

Potential extensions of the concept.
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Introduction to Machine Diagram of Genetic Circuit

Legend for Genetic Circuit
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Introduction to Machine Diagram of Genetic Circuit
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Model Importance of the Model

Importance of the Model

Saves valuable resources, every revision of the machine need not be
built.

Allows insights into what biology may or may not work, aiding in the
selection of biological components. Leaky promoters for example.

The benefits of modelling reach far beyond a theoretical
understanding of a system. Models allow us to determine how we
hope a system will behave. From this and experimental findings we
can go on to determine where assumptions and simplifications made
are critically important, whether it be positively or negatively.
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Model Model Derivation

Assumptions

The total occupied and unoccupied receptors, is constant.

Our system reaches a quasi-steady state.

The number of input molecules is much greater than the number of
receptors, this implies that the receptors are always operating at
maximal capacity, so they are virtually never unoccupied.
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Model Model Derivation

Activation

Figure: Genetic Circuit Illustrating Activation.

Activation Kinetic
d[P]
dt

= i
[A]n

Kh+[A]n + b

where [A] is the concentration of activator,
[P ] is the concentration of the protein,
n is the Hill cooefficient, (A measure of cooperative binding)
Kh is the concentration relating to half the maximal rate of expression,
i is the increase in output from basal rate to maximal rate,
b is the basal rate of transcription.
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Model Model Derivation

Activation Kinetic Graph

Figure: Activation Kinetic, i=3, Kh=1, b=1, n=2.
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Model Model Derivation

Activation Kinetic Graph
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Figure: Activation Kinetic, i=3, Kh=1, b=1, n=1.
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Figure: Activation Kinetic, i=3, Kh=1, b=1, n=6.

B.A. Jacobs (CAM Wits) IGEM Competition 10 October 2010 11 / 22



Model Model Derivation

Repression

Figure: Genetic Circuit Illustrating Repression.

Repression Kinetic
d[P]
dt

= b
1+Ke [R]n

where [R ] is the concentration of repressor,
[P ] is the concentration of the protein,
Ke is the equilibrium rate of cooperative binding.
b is the basal rate of transcription,
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Model Model Derivation

Repression Kinetic Graph

Figure: Repression Kinetic, Ke=1, b=2, n=2.
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Model Model Derivation

Repression Kinetic Graph

Figure: Repression Kinetic, Ke=1, b=2, n=1.

Figure: Repression Kinetic, Ke=1, b=2, n=6.
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Model Model
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Model Model

Model

d[PLCR-PapR]
dt

= b1 + kM1[IPTG]n1

kh1+[IPTG]n1 − l1[PLCR-PapR]

d[Venus]
dt

= b2 + kM2[IPTG]n1

kh2+[IPTG]n1 − l2[Venus]

d[PLCR-PapR]
dt

=
(

b3 + kM3[PLCR-PapR]n2

kh3+[PLCR−PapR]n2

)(

1
1+c1[SpoA]n3

)

− l3[PLCR-PapR]

d[ΦAct]
dt

=
(

b4 + kM4[PLCR-PapR]n2

kh4+[PLCR−PapR]n2

)(

1
1+c2[SpoA]n3

)

− l4[ΦAct]

d[SpoA]
dt

= b5 + kM5[ΦAct]n2

kh2+[ΦAct]n2 − l5[SpoA]
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Results Preliminary Results

Preliminary Results

By making the false assumption that our promoter is not leaky we
can exam the results following.

From these results we can ascertain whether the behaviour and subtle
delays in expression are accurate and desirable.
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Results Preliminary Results

No Basal Transcription

Figure: Solution Plot of System With no Basal TranscriptionB.A. Jacobs (CAM Wits) IGEM Competition 10 October 2010 18 / 22



Results Reasonable Results

Reasonable Results

We now relax our false assumption and incorporate a basal rate of
transcription.

This introduces the problem of identifying correct operation of our
machine or ruling out false positives.

However given the increase in efficacy in production in the presence of
an inducer we can regard the basal rates as an acceptable level of
noise.
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Results Reasonable Results

Non-Zero Basal Rate of Transcription without Activation

Figure: Solution Plot of System With Basal Transcription but No Input
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Results Reasonable Results

Non-Zero Basal Rate of Transcription with Activation

Figure: Solution Plot of System With Basal Transcription
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Conclusion Conclusion

Conclusion

Although the kinetics used in the model are derived from enzymatic
reactions, the biological processes of gene expression and enzyme
reactions have parallels that substantiate the use of these models.

Experimental data from preliminary biological constructs is still
pending and hence the accuracy and dependability of the model is
still to be determined.

Next year
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