Codon bias

ATG AGG TTA AAT AGT CCC AGA CCG
Fast
Slow

Synonymous substitution

Match
<table>
<thead>
<tr>
<th>Codon</th>
<th>Amino Acid</th>
<th>Amount in A</th>
<th>Rank in A</th>
<th>Amount in B</th>
<th>Rank in B</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAU</td>
<td>H</td>
<td>0.3</td>
<td>2</td>
<td>0.8</td>
<td>1</td>
</tr>
<tr>
<td>CAC</td>
<td>H</td>
<td>0.7</td>
<td>1</td>
<td>0.2</td>
<td>2</td>
</tr>
</tbody>
</table>

E(CAU): 5*0.8=4; A(CAU)=3; D(CAU)=1
E(CAC): 5*0.2=1; A(CAC)=2; D(CAC)=-1

Fast

Input Sequence

CAU CAU CAU CAU CAU

CAU CAU CAC CAC CAU

CAC CAC CAC CAC CAC

Slow

Synonymous Substitution

CAC CAC CAU CAU CAC

Match

CAU CAU CAU CAC CAU

CAC CAC CAU CAU CAC
Transition 1→2: Binding of a fresh tRNA-EF-Tu complex to site A;
\[\frac{dn}{dt} = \omega_{h2} P(N)Q(N) + \omega_{p} \left(\prod_{s=1}^{i} (1 - p(s)) \right) + \omega_{p} P_{i}(1) \]

Transition 2→3: GTP part of EF-Tu hydrolized to GDP;
\[\frac{dn}{dt} = \omega_{h2} P_{i}(i-1)Q(i-1) + \omega_{p} P_{i}(i) - \omega_{p} P_{i}(i) \]

Transition 3→4: Phosphate group, a product of the hydrolysis, leaves, and releases the EF-Tu;
\[\frac{dp}{dt} = \omega_{p} P_{i}(i) - k_{2} P_{i}(i) \]

Transition 4→5: Shift of tRNA, and site A occupied by EF-G in the GTP bound form;
\[\frac{dp}{dt} = k_{2} P_{i}(i) - k_{2} P_{i}(i) \]

Transition 5→6: Hydrolysis of GTP to GDP and release;
\[\frac{dp}{dt} = k_{2} P_{i}(i) - k_{2} P_{i}(i) \]

Transition 6→7→: Shift of ribosome.
Significance
Measeuring RiPs

\[
\lim_{\Delta t \to \infty} \text{RiPs}(t, \Delta t) = \frac{P(t + \Delta t) - P(t)}{(R(t + \Delta t) + R(t))/2}
\]

\[
\text{RiPs}(t) = \frac{dP}{dt} \frac{1}{R(t)}
\]
Protocol

1. Inoculation
 - Inoculate E.coli with PSB1A2 (BBa_J04450 inserted)
 - Get medium from LB every 15mins
 - Centrifugation and Wash the sediment

2. Target RNA extraction and measurement
 - Extract total RNA with Takara Trizol extraction protocol
 - Use 1ug RNA for reverse transcription
 - Real-time PCR

3. Target protein extraction and measurement
 - Suspend the sediment and lysate
 - Heat in 100
 - SDS-PAGE with standard curve to quantify
averageRiPs(\Delta t) = \left(\int_{t_0}^{t_0+\Delta t} \frac{dP}{R(t)} \right) / \Delta t
\(\text{RiPs}(t) = \frac{dP}{dt} \frac{1}{R(t)} \)

- OD value
- temperature
- pH
- RBS strength
- medium
- copy number of plasmid
- ect.