Welcome to the Duke iGEM 2010

Duke Engineering: Where the Magic Happens
Developing a Modular Regulatory Toolkit Using Protein Sequestration

Duke iGEM 2010

• High Schooler: Stefano Fenu

• Undergrads: Kevin Chien, Nicholas Tang, Peter Zhu

• Advisors: Nicolas Buchler, Jingdong Tian
Background

Problems with modern bistable switches:

- Promoter "leakiness" can impact efficiency
- Basal noise can produce signal errors
Goals

- Removal of basal signal expression
- Noise removal
- Fast-acting response to stimulus
- Tunability through library generation
Design

- **Protein sequestration**
 - Can generate drastic response to stimulus
 - Basal signal production can be “buffered out”
 - Ultrasensitivity can be produced
Background

- **Leucine Zippers (bZIPS)**
 - Eukaryotic DNA specific—will only affect recombinant DNA in bacteria
 - DNA binding only occurs when bZIPs are dimerized
Background

- Dominant negatives of bZIPs
- Competitive inhibition
- Higher binding affinity
Design

c-Fos and c-Jun leucine zippers

Bind to dominant negative

pC-Fos/CJun Promoter

Dimerize and bind to cI promoter modified with AP-I binding site
Design
Design

- Heptad repeats of leucine determine specificity
 - Alteration of inter-heptad base pairs or heptad interchanges can generate uniquely specific novel leucine zippers
Novel Promoter

- cl promoter:
 taacaccgt gcgtttgactatttt tacctctgg cggtgataatgttgc

- AP-1 Promoter, also called c-Fos/c-Jun promoter
 ctgactcat gcgtttgactatttt tgacgtca cggtgataatgttgc

- AP-1 Binding Sites:
 ctgactcat
tgacgtca

- cl repressor binding sites:
 tacctctgg
tacctctgg
BioBricks

- **K429000**
 - Promoter testing device

- **K429001**
 - Promoter testing device
Next Step

- Generating libraries of leucine zippers and their dominant negatives
- Incorporation of bZIP switches into existing gene networks
Future Applications

- **Signal amplifier**
 - Generated by ultrasensitive feed-forward loop

- **Higher order logic functions**
 - Uniquely specific bZIP switches can be concatenated indefinitely
High Throughput Expression Screening

- Obtain time lapse expression information from LacZ and GFP expressing colonies in solid culture.
- Efficiently and automatically extract, evaluate, and correlate growth and expression information.
- Goals:
 - Match the high throughput of DNA synthesis machines.
 - Address bottlenecks such as limited sample size of fluorometry and specificity of flow cytometry.
Codon Optimization

- Each amino acid has redundant codons. It is acknowledged that optimal codons help achieve increased protein expression.
- A laboratory DNA synthesizer was used for degenerate oligonucleotide synthesis of gene fragments. By substituting a random base pair every third base pair in the sequence, a combinatorial library of codon variants is generated.

<table>
<thead>
<tr>
<th>U</th>
<th>C</th>
<th>A</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>UUU Phe</td>
<td>UCC Ser</td>
<td>UAU Tyr</td>
<td>UGU Cys</td>
</tr>
<tr>
<td>UUC Phe</td>
<td>UCA Ser</td>
<td>UAC Tyr</td>
<td>UGC Cys</td>
</tr>
<tr>
<td>UUA Leu</td>
<td>UCG Ser</td>
<td>UAA Stop</td>
<td>UGA Stop</td>
</tr>
<tr>
<td>UUG Leu</td>
<td>UAG Stop</td>
<td>UGG Trp</td>
<td></td>
</tr>
<tr>
<td>CUU Leu</td>
<td>CCA Pro</td>
<td>CAU His</td>
<td>CGU Arg</td>
</tr>
<tr>
<td>CUC Leu</td>
<td>CCG Pro</td>
<td>CAC His</td>
<td>CGC Arg</td>
</tr>
<tr>
<td>CUA Leu</td>
<td>CUG Pro</td>
<td>CAA Gln</td>
<td>CGA Arg</td>
</tr>
<tr>
<td>CUG Leu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>A</td>
<td>G</td>
</tr>
<tr>
<td>AUA Ile</td>
<td>ACA Thr</td>
<td>AAC Asn</td>
<td>AGU ser</td>
</tr>
<tr>
<td>AUG Met</td>
<td>ACC Thr</td>
<td>AAA Lys</td>
<td>AGC ser</td>
</tr>
<tr>
<td>AUC Ile</td>
<td>ACA Thr</td>
<td>AAA Lys</td>
<td>AGA Arg</td>
</tr>
<tr>
<td>ACG Thr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>C</td>
<td>A</td>
<td>G</td>
</tr>
<tr>
<td>GUU Val</td>
<td>GCU Ala</td>
<td>GAU Asp</td>
<td>GGU Gly</td>
</tr>
<tr>
<td>GUC Val</td>
<td>GCC Ala</td>
<td>GAC Asp</td>
<td>GCG Gly</td>
</tr>
<tr>
<td>GUA Val</td>
<td>GCA Ala</td>
<td>GAA Gln</td>
<td>GGA Gly</td>
</tr>
<tr>
<td>GUG Val</td>
<td>GCG Ala</td>
<td>GAG Glu</td>
<td>GGG Gly</td>
</tr>
</tbody>
</table>
Experimental Setup (GFP)

- A blue light transilluminator and 535nm discriminating filter was optimized for GFP.
- A computer controlled DSLR Camera was for high resolution imaging.
Experimental Setup (LacZ)

- Petri dishes are incubated on the scanning window of a flatbed scanner.
- A macro on the host computer was designed to rescan at every 15 minutes for 12 hours.
pET Expression System

- Synchronized gene expression
- IPTG induces the production of both GFP and polymerase, ensuring full control of transcription.

A. Uninduced - no expression

B. Induced - expression of gene of interest
An automatic thresholding method was used to identify bacterial colonies.
Verification
Parameters

- Certain parameters (Area, Rate, Latency, Half Time, Final Intensity) are estimated in order to rank colonies.
- Colonies can then be picked for further analysis or sequencing.
Latency
Outlook

• Characterize leucine zipper libraries.
• Develop fusion proteins to screen for proteins other than GFP and LacZ.
• Develop expression vectors by tuning transcription factors.
• High throughput sequencing to develop an understanding of the underlying science of codon bias.
Acknowledgements

- Dr. Jingdong Tian
- Maggie Quan
- Marcus Henderson
- Matt Brown
- Tian Lab