A System for the Expression and Control of Appetite Regulation Protein in E.coli

Brian Burnley, Hunter Matthews, Patrick Sullivan, Claudia L. Rocha, and David Donnelly
1Department of Biology and 2Department of Electrical Engineering, The Citadel, Charleston, SC 29409

Abstract
Appetite can shape a person’s life, from body composition to mood, yet the means for controlling appetite are very limited... The 2010 Citadel-Charleston iGEM team invites you to join us as we explore a novel healthcare solution to obesity and weight-related ailments: influencing the desire to eat through an engineered strain of intestinal microflora. Our team has focused research and development on Peptide Tyrosine Tyrrosine (PYY), a peptide which could permit microorganisms native to the gastrointestinal tract to interact with the central nervous system and manipulate the perception of hunger. The Citadel-Charleston Team has worked to express the PYY3-36 peptide in E.coli and to ensure that its expression is strictly controlled by means of a cellular population limit.

Population Control Circuit
For PYY3-36 to be an effective candidate for microbial supplementation and use in a brain-gut appetite control system it would need to be under strict regulation. Overproduction of the peptide should be prevented by a secondary control module. This new module would work to maintain a specific, desirable level of PYY3-36 production. Our control module is based on the programmed population control model developed by You et al. (2). We designed a poison-generating module that becomes activated only once a colony of cells has reached such a density that additional PYY3-36 production is not desired.

Three key features of the control module make a population limit possible:
1. The first feature is inter-cellular communication, or quorum sensing. The N-Acryl Homoserine Lactone (AHL) family of molecules is produced constitutively by all cells in the colony. These molecules accumulate within the cell and diffuse into the extracellular space. As the colony grows, the concentration gradient is reversed, and uptake of AHL into the cells dominates. In this way, AHL acts as a broadcasting system for the density of the colony as a whole.
2. The second feature is a sensitivity tuner. Thanks to work done previously by past Cambridge iGEM teams, the Registry now boasts a set of parts designed to fine-tune the level at which transcription of a given downstream sequence can begin. When coupled with the AHL inter-cellular communication system described above, these parts allow the designer to construct a device which sets a precise threshold marker for population size, the attainment of which triggers the transcription of downstream sequences in the circuit.
3. The third feature is a cell poison. The CcdB gene was selected for this purpose as it is lethal when expressed in E.coli and has been shown to be effective at population control in current research. The peptide operates by rendering DNA gyrase nonfunctional. Once the translation of CcdB has begun, the colony size begins to decrease as cells die from exposure to the poison. The cell population continues to drop until it is below the density level producing enough AHL to trigger transcription of the poison downstream of the sensitivity tuner.

The whole system, consisting of the primary and control modules, allows the population to cycle. The colony grows until it passes the threshold, then decreases in density until poison production is cut off. This oscillatory period has been shown in previous research to dampen as the cycles continue, leveling out along the “switch point” where CcdB is expressed.

Due to time constraints and the natural hurdles encountered by a group of undergraduate students and professors new to biological engineering and the iGEM competition, The Citadel team has not completed construction of the target circuit. We hope to continue this work in the future or to inspire others to extend research with PYY3-36.

References

Acknowledgements
This project was supported by The Citadel’s Office of the Provost and Department of Biology.