ABSTRACT

Cells can sense and respond to the presence of various gas molecules such as oxygen, nitrogen and carbon monoxide using gas sensor proteins.

CooA is a carbon monoxide (CO) sensing transcription factor. It is a member of the cAMP receptor protein (CRP)/fumarate nitrate reduction (FNR) family of transcriptional regulators. CooA switches on oxidation enzymes in *Rhodospirillum rubrum* which enables the bacterium to use CO as a carbon source.

CO is an odorless and colorless gas which can be extremely lethal. Our aim is to develop a cell sensor which can detect a wide range of CO concentration in the environment.

We are building CooA and CooA-responsive promoter biobricks which will be transformed into E.coli. Fluorescent proteins (GFP and RFP) will be utilized as dose-responsive signals of ambient CO.

PROJECT DESCRIPTION

Objectives
- To construct a carbon monoxide sensing cell sensor
- To increase the dynamic range of the sensor via strong/weak promoter coupling;

Enhanced Dynamic Range (EDR)

How E-CO Sensor Works?
- When CO is introduced into the medium, transcription from both strong and weak CooA responsive promoters will be initiated.
- Since affinity of CO bound transcription factor is higher for the strong promoter, GFP signal will dominate the RFP signal due to the higher transcription rate of the former.
- Increase in CO concentration will completely saturate strong promoter and after a point saturation of the second, weaker promoter will begin.
- As the concentration of the signal from weak promoter (RFP) increases, detected fluorescent signal will start to change from green to yellow.

COOA EXPRESSION AND PURIFICATION

We expressed and purified CooA using a combination of anion exchange and affinity chromatography.

COOA-RESPONSE ELEMENT AFFINITY STUDIES

We used pCooF and pCoom as positive controls to optimize Electrophoretic Mobility Shift Assay (EMSA). Retardation bands and decreased free DNA band intensity indicate CooA-response element binding.

OPTIMIZATION OF CULTURING AND CO FEEDING

We optimized three different setups for culturing and CO feeding; Fermentor, flask and controlled atmosphere chamber.

CONCLUSIONS

- We have built a carbon monoxide sensing cell sensor.
- 17 biobricks have submitted to iGEM library.
- Two binding characterization methods, EMSA and ITC, were optimized for affinity screening of mutated promoters.
- Three culturing and CO feeding setups for testing and performance evaluation of our gas sensing cell sensor were optimized.
- We showed by two independent experiments (EMSA and Cell sensor) that CooA has a low-level transcriptional activity even in the absence of CO.

FUTURE WORK

- Sensitivity and response time studies of the sensor will be conducted.
- Enhanced Dynamic Range (EDR) components will be implemented.
- Thermodynamic characterization of response element-COOA binding via Isothermal Titration Calorimetry (ITC) will be completed.

FUTURE IMPLICATIONS

- E-CD Sensor provides a technical framework for future gas sensing systems.
- EDR concept can be used in other contexts as a dose-responsive trigger component.
- We consider E-CD Sensor as the first step towards development of gas sensing and metabolizing cell factories which may take a role in future biohydrogen production and terraforming projects.